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Asymptotic forms for jets from standing waves
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(Received 15 February 2001 and in revised form 1 June 2001)

Standing gravity waves forced beyond the maximum height for perfect periodicity
can produce vertical jets with sharp-pointed tips. In this paper, canonical forms for
the wave crests are derived which display sharp cusps in the limit as the time t tends
to infinity. The theoretical profile is in general quartic in the space coordinates, and
can describe the smooth transition of a fairly low wave crest to a cusped form. There
is no singularity as the surface slope passes through 45◦.

1. Introduction
The forming of vertical jets in standing waves and in steep progressive waves

meeting a vertical wall has been studied in several recent laboratory experiments (Chan
& Melville 1988; Jiang, Perlin & Schultz 1998; Bredmose et al. 2000) and numerical
computations (Cooker & Peregrine 1991; Longuet-Higgins 2001a,b; Longuet-Higgins
& Dommermuth 2001). While the early, highly accelerated phase of the motion has
received some attention and a certain degree of explanation (Longuet-Higgins &
Oguz 1997; Cooker 2000; Longuet-Higgins 2001a,b), later stages of the flow, when
the vertical acceleration at the crest has fallen almost to −g and the tip of the jet is in
free-fall, have yet to be represented analytically, even when the influences of surface
tension and viscosity are theoretically absent.

Both the experiments and the more recent numerical calculations, especially those
by Longuet-Higgins & Dommermuth (2001), strongly suggest that the tip of the
jet can tend towards a sharp cusp with increasing time t. This implies the presence
of cubic or higher-order terms in the expression for the velocity potential. Such an
analytic form has been suggested previously for a plunging breaker in a progressive
gravity wave (Longuet-Higgins 1980, § 10). Here we shall apply the same type of
analysis to the simpler case of a symmetrical jet produced by a standing wave.

In all of the present calculation it is assumed that the flow is inviscid and irrotational
and that surface tension can be ignored. Moreover the motion will be viewed in a
free-fall frame of reference, so that there is no local effect of gravity. The solutions
are to be valid asymptotically near the tip of the jet and as the time t tends to infinity.

As far as fourth order in the radius r, the procedure yields a family of canoni-
cal solutions with one free parameter; see § 4. These are illustrated by numerical
computations in § 5, and a discussion follows in § 6.

2. General solution
Take rectangular coordinates as in figure 1, with the x-axis horizontal and the y-axis

vertically upwards; r and θ are polar coordinates such that (x, y) = r(sin θ,− cos θ).
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Figure 1. Rectangular and polar coordinates in a free-fall reference frame.

Consider a velocity potential

φ = 1
2
Ar2 cos 2θ + 1

3
Br3 cos 3θ + 1

4
Cr4 cos 4θ, (2.1)

where A,B, C are functions of the time t. This expression is to represent a free-surface
flow valid in the limit as r/t → 0. In fact we shall take A = 1/t, with B and
C proportional to higher inverse powers of the time t. The reference frame being
inertial, the pressure p is given by

−p = φt + 1
2
q2 − F(t), (2.2)

where q is the particle velocity and F an arbitrary function of t. On substitution from
(2.1)

−p = r2( 1
2
A2 + 1

2
Ȧ cos 2θ) + r3(AB cos θ + 1

3
Ḃ cos 3θ)

+r4( 1
2
B2 + AC cos 2θ + 1

4
Ċ cos 4θ)− F, (2.3)

terms of higher degree in r being neglected. Similarly for the rate of change of p
following a particle we find

−Dp

Dt
= r2[2AȦ+ ( 1

2
Ä+ A3) cos 2θ]

+r3[2(A2B + AḂ + ȦB) cos θ + (2A2B + 1
3
B̈) cos 3θ]

+r4[2BḂ + (4AB2 + 2AĊ + ȦC) cos 2θ

+(5A2C + AB2 + 1
4
C̈) cos 4θ]− Ḟ . (2.4)

On the free surface, both p and Dp/Dt are to vanish simultaneously. This can be
ensured by specifying that

Dp

Dt
= p

Ḟ

F
(1 + r3R + r4S + O(r5)), (2.5)
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where R and S are functions of θ and t only. By symmetry we may assume that

R = R1 cos θ + R3 cos 3θ,

S = S0 + S2 cos 2θ + S4 cos 4θ,

}
(2.6)

where the Rn and Sn are functions of t only.
On equating coefficients of r2 and r2 cos 2θ in (2.5) we obtain

2AȦ
1
2
A2

=
1
2
Ä+ A3

1
2
Ȧ

=
Ḟ

F
, (2.7)

of which the general solution was derived by Longuet-Higgins (1972). The particular
solution in which we are interested here is

A =
1

t
, F =

F0

t4
, (2.8)

where F0 is an arbitrary constant. Note that the first term in equation (2.1) represents
a stagnation point flow:

φ =
1

t
(y2 − x2), (2.9)

which from (2.3) has a real free surface

x2 = tF = F0/t
3 (2.10)

consisting of two parallel vertical planes, but only if F0/t
3 > 0.

Next, on equating coefficients of r3 cos θ and r3 cos 3θ in equation (2.5) we obtain

2(A2B + AḂ + ȦB) + ḞR1

AB
=

2A2B + 1
3
B̈ + ḞR3

1
3
Ḃ

=
Ḟ

F
. (2.11)

These constitute two equations for R1 and R3 in terms of A,B and F , namely

ḞR1 = AB(Ḟ/F)− 2(A2B + AḂ + ȦB),

ḞR3 = 1
3
Ḃ(Ḟ/F)− (2A2B + 1

3
B̈).

}
(2.12)

For example, if we choose B = B0/t
2 where B0 is a constant we find

ḞR1 =
−4B0

t4
− 2B0

(
1

t4
− 3

t4

)
= 0,

ḞR3 =
8

3

B0

t4
− B0

(
2

t4
+

2

t4

)
= −4

3

B0

t4
,

 (2.13)

and hence

R1 = 0, R3 =
B0t

3F0

. (2.14)

Similarly by equating coefficients of r4, r4 cos 2θ and r4 cos 4θ in equation (2.5) we
can obtain three equations for S0, S2 and S4 which, if C = C0/t

3, yield

S0 = − B2
0

2F0

, S2 =
B2

0 − C2
0

F0

, S4 =
B2

0 + 5C0

4F0

. (2.15)

Note that as t increases the term in r3 in equation (2.5) will come to dominate the
series. The term in r4 is relatively small, since by hypothesis r/t � 1, and similarly
for terms of higher order in r.
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3. The free surface
The free surface p = 0 can be found by equating to zero the right-hand side of

(2.3). If we now substitute

A =
1

t
, B =

3β

t2
, C =

4γ

t3
(3.1)

in this expression we obtain

r2

t2
( 1

2
− 1

2
cos 2θ)

+
r3

t3
(3β cos θ − 2β cos 3θ)

+
r4

t4
( 9

2
β2 + 4γ cos 2θ − 3γ cos 4θ) =

F0

t4
. (3.2)

On replacing 1 by (cos2 θ + sin2 θ)n where appropriate we get

r2

t2
sin2 θ

+
r3

t3
(β cos3 θ + 9β cos θ sin2 θ)

+
r4

t4
[( 9

2
β2 + γ) cos4 θ + 9(β2 + 2γ) cos2 θ sin2 θ + ( 9

2
β2 − 7γ) sin4 θ] =

F0

t4
. (3.3)

Now writing

(ξ, η) = (x/t, y/t) = (r/t)(sin θ,− cos θ) (3.4)

we have

ξ2 − β(η3 + 9ξ2η) + [( 9
2
β2 + γ)η4 + 9(β2 + 2γ)ξ2η2 + ( 9

2
β2 − 7γ)ξ4] = ε, (3.5)

where

ε = F0/t
4. (3.6)

The left-hand side of equation (3.5) being quadratic in ξ2, with coefficients which
are polynomials in η, for any given η we may solve for ξ2. If either of the roots is
non-negative we can then plot ξ versus η.

Equation (3.5) is asymptotically valid for sufficiently small values of ξ and η, that is
to say for sufficiently large values of t when x and y are bounded, and for extremely
small values of ε. Near the origin of (ξ, η), where the quartic terms are relatively
small, we have approximately

ξ2 = ε+ β(η3 + 9ξ2η). (3.7)

In the limit as ε → 0 this curve (or surface) has an upward- or downward-pointing
cusp according as β is negative or positive 0. If ε < 0 the curves p = 0 lie inside the
cusped curve and if ε > 0 they lie outside. Since ε = F0/t

4 → 0 as t→ ∞ we see that
the limiting curves are in general cusped.

Note that if all the fourth-order terms in equation (3.5) are neglected we obtain the
lower-order approximation

ξ2 − β(η3 + 9ξ2η) = ε (3.8)
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Figure 2. Surface profiles corresponding to equation (4.1) when δ = −1 and V = 1/9.

with solution

ξ2 =
ε+ βη3

1− 9βη
. (3.9)

The corresponding profile will have a horizontal asymptote given by η = (9β)−1.

4. Canonical forms
When β < 0, giving an upward-pointing cusp when ε → 0, we may by a suitable

choice of velocity scale choose β = −1. (Setting β = +1 would simply reflect the
profile in the horizontal axis, i.e. turn it upside down.) Then by a further choice of
time scale we may set ε = ±t−4. Thus equation (3.8) is reduced to the canonical form

x2 = δt−2 − (y3 + 9x2y)/t, (4.1)

where δ = ±1. Similarly equation (3.5) is reduced to

x2 = δt−2 − (y3 + 9x2y)/t+ [(7γ − 9
2
)x4 − 9(2γ + 1)x2y2 − (γ + 9

2
)y4]/t2. (4.2)

Exceptionally we may have β = 0, and then by choice of scales

x2 = δt−2 + δ′(7x4 − 18x2y2 − y4)/t2. (4.3)

As always, these expressions are valid only when x/t and y/t are sufficiently small.

5. Numerical calculations
Consider first the approximation (4.1). The case δ = −1 is shown in figure 2. For

clarity, the profiles have been separated by adding successive vertical displacements
∆t/9, where ∆t is the time interval between profiles. Physically this is equivalent to
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Figure 3. Surface profiles corresponding to equation (4.1) when δ = +1 and V = 1/9.
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Figure 4. The inclination α to the horizontal of the asymptotes in the profile (4.2),
as a function of γ (or γ/β2).

imposing a uniform vertical velocity V = 1/9. The effect is to maintain the horizontal
asymptote at the same level y = 0.

As t increases, the central part of the profile approaches the form of a semi-cubical
parabola, with increasing accuracy.

The case δ = +1 is shown in figure 3. The most noticeable difference between
these profiles and those of figure 2 is that they can become very steep, indeed almost
vertical, at points other than the central cusp. If a vertical velocity were not imposed,
these curves would all be nested inside each other.

In order to classify the profiles corresponding to equation (4.2) it is convenient to
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Figure 5. (a) Surface profiles corresponding to the canonical form (4.2) when δ = −1 and γ = −5.
The time interval ∆t between successive profiles is 2. To separate the curves a vertical velocity
V = 0.06 has been imposed. (b) Extension of (a) but with ∆t = 10 and V = −0.015.

consider the asymptotes for large values of x and y (but small values of x/t and
y/t). The directions of the asymptotes are found by equating to zero the fourth-order
terms, hence

x2/y2 = [9(2γ + 1)±√{81(2γ + 1)2 + (14γ − 9)(2γ + 9)}]/(14γ − 9). (5.1)

The angle of slope

α = | arctan(y/x)| (5.2)

is plotted against γ (or more generally γ/β2) in figure 4. In a central range, given by
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Figure 6. Surface profiles corresponding to the canonical form (4.2) when δ = +1 and γ = −5.
Time interval ∆t = 10. Imposed velocity V = 1/9.
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Figure 7. Surface profiles corresponding to the exceptional case β = 0, equation (4.3), when
δ = −1, δ′ = −1. Time interval between profiles: ∆t = 10. Imposed velocity V = 0.

−1.227 < γ < 0.643, there are no real asymptotes. On the other hand as γ → ±∞, the
angle γ tends to a finite value: α = 31.68◦ (see below).

A typical example, when γ = −5, is shown in figures 5(a) and 5(b). In figure 5(a),
in order to separate the curves, a vertical velocity V = 0.05 has been imposed. The
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Figure 8. Numerically calculated profiles of wave crests generated at time t = 0 by imposing the
vertical velocity (6.1) on a flat water surface. Here C = 1. Enlargement of figure 9 of Longuet-Higgins
& Dommermuth (2001), seen in a free-fall reference frame.

successive profiles seem to represent the transition of a rounded wave crest into an
upwards vertical jet. It is noticeable that the maximum slope of each curve passes
through 45◦ without any singular behaviour with respect to the time t.

The sequence is extended to larger times t in figure 5(b), and here, for the sake of
clarity we have imposed a uniform downwards velocity V = −0.01. As t→∞ we see
the development of a sharp cusp.

Similarly when δ = 1 and γ = −5 we obtain the sequence of surface profiles shown
in figure 6. The curves are steeper, as in figure 4. The profile corresponding to t = 10
is not shown, since that joins with another branch coming from above the crest to
yield an unphysical solution.

When δ = 1 and γ = 5 the curves are again uninteresting.
Lastly we consider the exceptional case β = 0, given by (4.3). The only physically

interesting case is when δ = −1. The profiles are then as in figure 7. No vertical
velocity V has been imposed. For large values of x and y the curves approach the
asymptotes

7x4 − 18x2y2 − y4 = 0, (5.3)

that is to say

x2/y2 = (9 +
√

88)/7 = 2.6258 (5.4)

or

y/x = ±0.6171 = ± arctan 31.68◦. (5.5)

In each of figures 2, 3, 5, 6 and 7 the necessary condition that x/t and y/t shall be
small can be seen to be satisfied.
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Figure 9. Enlargement of the crests in figures 5(a) and 5(b), but with superposed velocity
V = −0.020. These correspond to equation (4.2) with δ = −1, γ = −5. Time interval between
profiles, ∆t = 4.

6. Discussion
Like the limiting Stokes corner flow in progressive surface waves, and its extension

to progressive waves of near-limiting height (Longuet-Higgins & Fox 1977, 1978) the
expressions given above are valid only asymptotically, in this case in the limit as
t → ∞ and r/t → 0. The functions B(t) and C(t) in §§ 2 and 3 are to some extent
arbitrary, and must be determined, in any particular case, by fitting the inner flow
which they represent to the outer flow in the rest of the fluid. The fitting must of
course be carried out in both the space and time domains.

At first sight it appears that by adding suitable terms of order r5 or higher powers
on the right of equation (2.5) one could proceed indefinitely to higher approximations.
However, there is no guarantee that the process will converge. It may well be more
convenient to adopt a low-order approximation which is certainly valid asymptotically
in the prescribed limits.

There is strong evidence that the asymptotic expressions for the surface profile
given in §§ 3 and 4 above do indeed describe the development of jets in some recent
numerical calculations. For example Longuet-Higgins & Dommermuth (2001) have
shown by precise calculation that if an upwards vertical velocity v of the form

v = C(gk)−1/2 cos kx (6.1)

is imparted at time t = 0 to an infinitely deep body of fluid, where k is a horizontal
wavenumber, g denotes gravity and C is a constant of order 1, then the crest of the
wave so generated tends to develop a sharp upwards jet. Figure 8 is an enlargement
of the wave crest, seen in a free-fall frame of reference; a displacement 1

2
g(t− t0)2 has

been added to the computed wave profile, where t0 is taken equal to 2.5. This may be
compared with figure 9, which is an enlargement of the crests in figures 5(a) and 5(b),
but with a superposed uniform velocity V = −0.015. The profiles in figure 9 represent
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equation (4.2) when δ = −1 and γ = −5. The similarity of figures 8 and 9 is striking.
No special attempt has been made to select the optimum value of γ for figure 8.

A further interesting feature of the canonical form (4.2) is that it provides a smooth
transition for a wave crest with maximum slope less than 45◦ to pass to a profile
having maximum slope much greater than 45◦ (as is shown in figures 5a and 6, for
example) without having to pass through a time-singularity such as occurs in the
Dirichlet hyperbola (Longuet-Higgins 1972) at time t = 0. For further discussion and
references see Longuet-Higgins & Dommermuth (2001).

The limiting forms described above may apply not only to steep, progressive waves
meeting a vertical wall but also to the bow waves of certain ships.

This research has been supported by the Office of Naval Research under Contract
N00014-00-1-0248.
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